Lecture Notes: 08.01.2013

January 14, 2013

Fractals generated by iterated function systems.

S is the decreasing limit of compact sets S_{n}.
It is defined by replacing one triangle (a_{0}, a_{1}, a_{2}) with three scaled copies.

$$
\left(a_{0}, a_{1}, a_{2}\right) \mapsto\left(a_{0}, \frac{a_{0}+a_{1}}{2}, \frac{a_{0}+a_{2}}{2}\right)
$$

The fractal on the left hand side is generated by replacing one triangle with four scaled copies.

$$
M_{1}:=\frac{1}{3}\left(\begin{array}{lll}
3 & 0 & 0 \\
2 & 1 & 0 \\
2 & 0 & 1
\end{array}\right), M_{2}:=\frac{1}{3}\left(\begin{array}{lll}
2 & 0 & 1 \\
1 & 2 & 0 \\
0 & 3 & 0
\end{array}\right), M_{3}:=\frac{1}{3}\left(\begin{array}{lll}
0 & 3 & 0 \\
0 & 2 & 1 \\
1 & 0 & 2
\end{array}\right), M_{4}:=\frac{1}{3}\left(\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 2 \\
0 & 0 & 3
\end{array}\right)
$$

or simply

$$
M:=\frac{1}{3}\left(\begin{array}{lll}
3 & 0 & 0 \\
2 & 1 & 0 \\
2 & 0 & 1 \\
1 & 2 & 0 \\
0 & 3 & 0 \\
0 & 2 & 1 \\
1 & 0 & 2 \\
0 & 1 & 2 \\
0 & 0 & 3
\end{array}\right)
$$

quadratic splineinterpolation:

$$
q_{\frac{1}{2}}(a, b, c)=\frac{1}{4}(a+2 b+c), \quad M_{1}=\frac{1}{4}\left(\begin{array}{ccc}
4 & 0 & 0 \\
2 & 2 & 0 \\
1 & 2 & 1
\end{array}\right), M_{2}=\frac{1}{4}\left(\begin{array}{ccc}
1 & 2 & 1 \\
0 & 2 & 2 \\
0 & 0 & 4
\end{array}\right)
$$

cubic Bézier splines:

$$
M_{1}=\frac{1}{8}\left(\begin{array}{llll}
8 & 0 & 0 & 0 \\
4 & 4 & 0 & 0 \\
2 & 4 & 2 & 0 \\
1 & 3 & 3 & 1
\end{array}\right), M_{2}=\frac{1}{8}\left(\begin{array}{llll}
1 & 3 & 3 & 1 \\
0 & 2 & 4 & 2 \\
0 & 0 & 4 & 4 \\
0 & 0 & 0 & 8
\end{array}\right)
$$

$S_{k}=A^{k} \circ D \leftrightarrow k^{\text {th }}-$ order B-spline
$\eta^{0}(t)=\chi_{[0,1]} \quad$ (piecewise linear and $\left.C^{0}\right)$
$\eta^{1}(t)= \begin{cases}t & \text { if } 0<t \leq 1 \\ -t & \text { if } 1<t \leq 2 \\ 0 & \text { otherwise }\end{cases}$
(piecewise quadratic and C^{1})

$\eta^{k}(t)$ is supported on $[0, k+1]$, is C^{k-1} and is polynomial of degree k on each $[i, i+1], i \in \mathbb{Z}$ Via convolution, inductively define: $\eta^{k+1}:=\eta^{k} * \eta^{0}$,

$$
\eta^{k+1}(t)=\int_{\mathbb{R}} \eta^{k}(t-n) \cdot \eta^{0}(n) d n=\int_{0}^{1} \eta^{k}(t-n) d n
$$

What is the $k^{\text {th }}-$ order B-spline with controlpoints $\left(a_{n}\right)$:

$$
\gamma(t)=\sum_{n \in \mathbb{Z}} a_{n} \eta^{k}(t-n)
$$

What is the B-spline in \mathbb{R}^{1} with controlpoints $\ldots, 0,0,1,0,0 \ldots\left(a_{n}=\delta_{n 0}\right)$
$\eta^{0}(t)=\eta^{0}(2 t)+\eta^{0}(2 t-1)$
$\eta^{1}=\eta^{0} * \eta^{0}$
$\eta^{k}=\eta^{0} * \eta^{0} * \ldots * \eta^{0}$

$$
\eta^{k}=\sum_{i=0}^{k+1} \frac{1}{2^{k}}\binom{k+1}{i} \eta^{k}(2 t-i), \quad \eta^{1}(t)=\sum_{i=0}^{2} \frac{1}{2}\binom{2}{i} \eta^{1}(2 t-i)
$$

Slices through a cube:

$[0,1]^{k+1}$ unit cube in \mathbb{R}^{n}
$e=(1,1, \ldots, 1) \in \mathbb{R}^{n}$
$H_{t}=\left\{x \in \mathbb{R}^{k+1} ;<x, e>=\frac{t}{\sqrt{k+1}}\right\}$
$k-\operatorname{area}\left(H_{t} \cap[0,1]^{k+1}\right)=\sqrt{k+1} \cdot \eta^{k}(t)$
$s_{i}^{k}:=\frac{\binom{k+1}{i_{1}}}{2^{k}}$ ("subdivision mask")
$\eta^{k}(t)=\sum_{i=0}^{k+1} s_{i}^{k} \eta^{k}(2 t-i)$
The B-spline $\sum a_{n} \eta^{k}(t-n)=\sum b_{m} \eta^{k}(2 t-m)$ where $b_{m}:=\sum s_{m-2 n}^{k} a_{n}$
Indeed, we can check $s_{m-2 n}^{k}$ is the matrix for $S_{k}=A^{k} \circ D$
$k=1$ (piecewise linear case): $S_{1}=\frac{1}{2}\left(\begin{array}{ccccccc} & 0 & 2 & 0 & 0 & 0 & \\ \cdots & 0 & 1 & 1 & 0 & 0 & \cdots \\ & 0 & 0 & 2 & 0 & 0 & \\ \cdots & 0 & 0 & 1 & 1 & 0 & \cdots \\ & \vdots & & \vdots & & \vdots & \end{array}\right)$
$k=2: S_{2}=\frac{1}{4}\left(\begin{array}{llll}1 & 3 & 0 & 0 \\ 0 & 3 & 1 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 3 & 1\end{array}\right)$

