If a group G acts on a topological space X then X is partitioned into the orbits of the action $G \cdot x = \{g \cdot x; g \in G\} \subset X$, ie we have an equivalent relation $x \sim y \Leftrightarrow \exists g \in G : y = g \cdot x$.

The **quotient space** is $X/G = X/ \sim$ which is the set of orbits or equivalence classes.

 $U \subset X/\sim$ is open in the quotient topology if $\bigcup U \subset X$ is open.

*2222 acting on \mathbb{R}^2 quotient = fundamental domain =

translation group \circ acting on \mathbb{R}^2

quotient is a torus

*333 acting on \mathbb{R}^2

as a topological space a closed disk quotient

The quotient of \mathbb{S}^2 or \mathbb{E}^2 by any of our discrete groups will - as a topological space - by a surface (possible with boundary) But we want to keep track of slightly more information - for each point, what was the stabilizer of the action.

An orbifold is a space locally modelled on \mathbb{E}^n modulo some group action

A 2-orbifold is a surface with boundary ($\Gamma = D_1$) and marked cone points (where $\Gamma = C_n \subset O_2$) and marked corner points ($\Gamma = D_n$).

 $\mathbb{E}^2/D_1 =$

////_ ...

 $\mathbb{E}^2/C_1 =$

All connected compact surfaces is a sphere with handles \circ or crosscap x and with boundary components *.

$$\Sigma_{g,k} = \underbrace{\circ \circ \ldots \circ}_{g} \underbrace{* * \ldots *}_{k}$$

$$N_{h,k} = \underbrace{xx...x}_{h} \underbrace{**...*}_{k}$$

Orbifold notation

 $\circ~{\rm handle}$

x crosscap

- * boundary component
- n (at the beginning): cone point
- $n \hspace{0.1 cm} (\text{after a } \ast) : \mbox{ corner in that boundary }$

 $23 \circ \circ * * 22*$

quotient orbifold is a disk with corners in the boundary polygons with angles of the form $\frac{\pi}{n}$

*236 *244	*233
	22n
	*nn
2222	235
333	234
236	233
244	
	22n
	nn

 $2*3 \quad 3*2$ $2*22 \quad 2*n$ 4*2 $\circ \text{ torus}$ xx Klein bottle

- . . .
- $\ast\ast$ cylinder
- *x Möbius band
- 22* open pillow case
- $22x \ \mathbb{R}P^2$ with cone points
- $nx \ \mathbb{R}P^2$ with cone points