Lecture 21

Stereographic projection

Definition. Denote the unit sphere in $\mathbb{R}^{n+1}$ by $\mathbb{S}^{n}=\left\{{x \in \mathbb{R}^{n+1}|(x,x)=1}\right\}$ and its north pole by $\mathbf{N}=e_{n+1}$.
The stereographic projection is a map $\sigma\colon \mathbb{S}^{n}\to\mathbb{R}^{n} \cup \left\{{\infty}\right\}$ from $\mathbf{N}$ to the plane
$E=\left\{{x \in \mathbb{R}^{n+1}|x_{n+1}=0}\right\} \cong \mathbb{R}^{n}$ through the equator:
\[
\sigma(X)=
\left\{
\begin{array}{ll}
\infty & \textrm{, } X = \mathbf{N}\\
l_{NX}\cap E & \textrm{, } X \neq \mathbf{N}\\
\end{array}
\right.
\]
Analytically $\sigma$ is given by
\[
\sigma(X)= \sigma\ \left(\begin{pmatrix}
x_1\\\vdots\\x_{n+1}
\end{pmatrix} \right)
= \frac{1}{1-x_{n+1}}\begin{pmatrix}
x_1\\\vdots\\x_{n+1}
\end{pmatrix}
\]
since
\[N+\lambda(X-N)=e_{n+1}+\lambda \begin{pmatrix}
x_1\\\vdots\\x_{n+1}
\end{pmatrix}
= \begin{pmatrix}
y_1\\\vdots\\y_{n}\\0
\end{pmatrix}
\Rightarrow \lambda=-\frac{1}{x_{n+1}-1}=\frac{1}{1-x_{n+1}}, X\neq N.
\]

Lecture21_Fig1_1

Sphere inversion
Definition. The sphere inversion $i_{M,r}\colon \mathbb{R}^{n} \cup \left\{{\infty}\right\} \to \mathbb{R}^{n} \cup \left\{{\infty}\right\}$ in the sphere
$\mathbf{S}_{M,r}=\left\{{x \in \mathbb{R}^{n}|\left\|x-M\right\|=r}\right\}$ is given by the following conditions:

  • $X’$ lies on the ray $\overrightarrow{MX}$,
  • $\left\|M-X\right\|\left\|M-X’\right\|=r^2$,
  • $M\longleftrightarrow\infty$.

Lecture21_Fig2_1

Properties of sphere inversions

  1. $i_{M,r}$ is an involution,
  2. $\mathbf{S}_{M,r}$ is fixed,
  3. affine subspaces containing M are mapped onto themselves.

 

Lemma.

Lecture21_Fig3_1

Proof.
Since
\[
\left\|M-A\right\|\left\|M-A’\right\|=r^2 = \left\|M-B\right\|\left\|M-B’\right\| \iff
\frac{\left\|M-A\right\|}{\left\|M-B\right\|}=\frac{\left\|M-B’\right\|}{\left\|M-A’\right\|}
\]
we get that $\Delta AMB$ and $\Delta B’MA’$ are similar. In particular:
\[
\measuredangle MA’B’=\measuredangle ABM.
\measuredangle MAB=\measuredangle A’B’M.
\]

$\Box$

Corollary. Circles through M are mapped to lines. In particular, the line is parallel to the tangent to the circle at M.

Lecture21_Fig4_1

Remark. All lines are thought to contain the point $\infty$ and are considered as circles of infinte radius.

Corollary. The stereographic projection is the restriction of the sphere inversion $i_{M,r}$ with $M=e_{n+1}$ and $r=\sqrt{2}$.

Lecture21_Fig5_1

Proof.

  1. The equator of $\mathbb{S}^{n}$ is fixed.
  2. $\mathbb{S}^{n}$ is mapped to a plane (Corollary) through the equator (1).
  3. Both inversion and stereographic projection preserve the rays.
  4. The intersection points of a ray with $\mathbb{S}^{n}$ and $\mathbb{R}^{n}$ are unique, hence $i_{M,r}\Big|_{\mathbb{S}^{n}}=\sigma$.
  5. $N=M\longrightarrow\infty$ by $i_{M,r}$.

$\Box$

Theorem. An inversion in a sphere:

  1. maps spheres/hyperplanes to spheres/hyperplanes,
  2. is a conformal map, i.e. it preserves angles.

 

Lecture21_Fig6_1

Proof.
(i) Consider the following sketch:

Lecture21_Fig7_1

Hence the angles $\alpha$ and $\beta$ satisfy
\[
(\pi-\alpha)+\beta+\frac{\pi}{2}=\pi \Rightarrow \alpha-\beta=\frac{\pi}{2}.
\]
(ii) Conformality follows from the following picture

Lecture21_Fig8_1

$\Box$

Remark. In general, the center of a sphere is not mapped to the center of its image by an inversion.

Corollary.

  1. The stereographic projection maps spheres through the north pole to hyperplanes and spheres not through the north pole to spheres.
  2. All spheres/hyperplanes are images of spheres on $\mathbb{S}^{n}$ under $\sigma$ (because $i_{0,1}$ is an involution).
  3. $\sigma$ is conformal.

 

Formula for the sphere inversion.
Consider the second figure showing the general idea of a sphere inversion. Since $X’$ lies on the ray $XM$ we have $X’=M+\lambda(X-M), \lambda > 0$ and from the second requirement for the sphere inversion we obtain

\begin{align*}
&&\underbrace{\left\|X’-M\right\|}_{X’-M=\lambda(X-M)} \left\|X-M\right\|&=r^2\\
\Rightarrow&& \lambda \left\|X-M\right\| \left\|X-M\right\|&=r^2\\
\Rightarrow&& \lambda = \frac{r^2}{\left\|X-M\right\|^2}.
\end{align*}
Hence the sphere inversion is given by

\[
i_{M,r}=M+\frac{r^2}{\left\|X-M\right\|^2}(X-M).
\]

Leave a Reply