Author Archives: pinkall

Discrete K-surfaces

The above picture shows examples of K-surfaces, i.e. surfaces with constant Gaussian curvature $K=-1$. The picture was made by Nicholas Schmitt and is part of the GeometrieWerkstatt Gallery. Instead of writing at length about the theory of K-surfaces and their … Continue reading

Posted in Uncategorized | Leave a comment

Symplectic Maps and Flows

Consider a physical system consisting of $k$ massive particles at positions in $\mathbb{R}^3$ which we can assemble in a vector in $\mathbf{q}\in\mathbb{R}^m$ where $m=3k$. Likewise, the velocities of these particles at a given instant of time can be described by … Continue reading

Posted in Lecture | Leave a comment

Plateau problem

Let $\Sigma = (V,E,F)$ be a triangulated surface (with boundary). A realization of the surface in $\mathbb{R}^3$ is given by a map $p:V \rightarrow \mathbb{R}^3$ such that $p_i,p_j,p_k$ form a non degenerated triangle in $\mathbb{R}^3$ for all $\{i,j,k\} \in \Sigma$, … Continue reading

Posted in Lecture | Leave a comment

Laplace Operator

Let $M= \left(V, E, F \right)$ be an oriented triangulated surface without boundary and $p:V \rightarrow \mathbb{R}^3$ a realization. In earlier lectures we considered the space of piecewise linear functions on $M$: \[W_{PL}:=\left\{ \tilde{f} :M\rightarrow \mathbb{R} \, \big \vert \,\left. … Continue reading

Posted in Lecture | Leave a comment

Dirichlet Energy

Let $M$ be a triangulated domain with the functionspace: \[W_{PL}:=\bigl\{f:M\rightarrow\mathbb{R}\,\bigl\vert\bigr.\,\,\,\left. f\right|_{T_{\sigma}} \mbox{ is affine for all } \sigma \in \Sigma_2 \bigr\}.\] On the interior of each triangle $T_{\sigma}$ in $M$ the gradient of a function $g \in W$ is well … Continue reading

Posted in Lecture | Leave a comment

Smooth Dirichlet Energy and Laplace Operator

Let $M \subset \mathbb{R}^2$ be a domain with smooth boundary $\partial M$ and outpointing normal vector field $N$. For a smooth function $f \in C^{\infty}(M,\mathbb{R})$ the gradient vector field $\mbox{grad} \, f :M \rightarrow \mathbb{R}^2$ is defined as : \[ … Continue reading

Posted in Lecture | Leave a comment

Differential Forms

Let $M\subset \mathbb{R}^n$ be an open set and $f:M\to \mathbb{R}^k$ a smooth map. Then for each $p\in M$ the Jacobian $f'(p)$ is a $k\times n$ matrix. The derivative $d_pf$ of $f$ at $p$ then is the linear map given by … Continue reading

Posted in Lecture | Leave a comment