Let $M$ be a connected discrete surface. From the last post we know
$\textrm{dim Im }d_1=\#F-1$
and we already knew
$\textrm{dim Ker }d_0=1$.
From
$\textrm{Im }d_0 \subset \textrm{Ker }d_1$
we see that the first Betti number
$\beta_1(M) := \textrm{dim Ker }d_1 -\textrm{dim Im }d_0$
is non-negative. Let us apply the dimension formula for linear maps to $d_0$ and $d_1$:
$\beta_1=\#\tilde{E}-\textrm{dim Im }d_1-(\#V-\textrm{dim Ker }d_0)=2+\#\tilde{E}-\#F-\#V$.
Thus the so-called Euler characteristic
$\chi(M):=\#V – \#\tilde{E} + \#F$
satisfies
$\chi(M) \leq 2$.
Theorem: $\chi(M)$ is an even number.
Proof: Since the permutation $\rho$ of $E$ consists of $\#\tilde{E}$ transpositions, its parity is
$\textrm{sgn } \rho =(-1)^{\#\tilde{E}}$.
The parity of a cyclic permutation
$\sigma: \{1, \ldots ,n\} \rightarrow \{1, \ldots ,n\}$
$\sigma(k) = k+1 \quad \textrm{mod }n$
is given by
$\textrm{sgn } \sigma =(-1)^{n-1}$.
From this we see
$\textrm{sgn } s=(-1)^{\#E+\#F}=(-1)^{\#F}$.
Similarly,
$(-1)^{\#F}(-1)^{\#\tilde{E}}= (\textrm{sgn } s)(\textrm{sgn } \rho)=\textrm{sgn } s\circ \rho=(-1)^{\#V}$.
$\square$
Thus also $\beta_1(M)$ is even and we can write
$\beta_1(M) = 2g$
for a natural number $g$ called the genus of $M$. The genus is related to the Euler characteristic by
$\chi= 2-2g$.