Poincaré disc/ball model
Consider the central projection with center s of Hn onto the plane xn+1=0.
This map can be described by
σ:Hn→D={u∈Rn:(u,u)<1}x↦1xn+1+1(x1⋮xn).
The inverse is given by
σ−1(u)=11−(u,u)(2u1+(u,u)).
For s+t((u0)−s)=(tu−1+t) is a point on →su and
−1=⟨(tu−1+t),(tu−1+t)⟩n,1=t2(u,u)−(t−1)2=t2(u,u)−t2+2t−1
yields t=0 or t(u,u)+2−t=0 which is equivalent to t=21−(u,u).
This implies X=(21−(u,u)u−1+21−(u,u))=11−(u,u)(2u1+(u,u)).
The map σ is the restriction of the following map to Hn:
x↦s−2⟨x−s,x−s⟩n,1(x−s),for ⟨x−s,x−s⟩n,1≠0.
A point x with ⟨x−s,x−s⟩<0 is mapped to a point on the ray →sx.
The plane xn+1=0 is the orthogonal complement of s:
⟨s−2⟨x−s,x−s⟩(x−s),s⟩=⟨s,s⟩−2⟨x−s,s⟩⟨x−s,x−s⟩=−1−2(⟨x,s⟩−⟨s,s⟩)⟨x,x⟩−2⟨x,s⟩+⟨s,s⟩=−1−2(⟨x,s⟩+1)−2−2⟨x,s⟩=0.
This map is an involution on the set {x∈Rn,1:⟨x−s,x−s⟩−1} with σ(Hn)=D and σ(D)=Hn, where D≅D×{0}.
Theorem.
Consider two curves γ1,γ2⊆D with γ1(0)=γ2(0)=p∈D and a:=γ1′(0), b:=γ2′(0).
Let ˆγ1:=σ∘γ1 and ˆγ2:=σ∘γ2 be the corresponding curves in Hn with ˆγ1(0)=ˆγ2(0)=P=σ(p) and A:=ˆγ1′(0), B:=ˆγ2′(0).
Then:
⟨A,B⟩n,1=4(1−(p,p))2(a,b).
This implies
coshα=⟨A,B⟩√⟨A,A⟩⟨B,B⟩=(a,b)√(a,a)(b,b),
where α is the angle of intersection of ˆγ1 and ˆγ2.
Proof.
Calculate derivatives:
A=ˆγ1′(0)=ddt(s−2⟨γ1(t)−s,γ1(t)⟩(γ1(0)−s))|t=0=−2a⟨p−s,p−s⟩+22⟨p−s,a⟩⟨p−s,p−s⟩2(p−s).
Similarly,
B=−2b⟨p−s,p−s⟩+22⟨p−s,b⟩⟨p−s,p−s⟩2(p−s).
Now,
⟨A,B⟩=4⟨a,b⟩⟨p−s,p−s⟩2−2⋅8⟨p−s,a⟩⟨p−s,b⟩⟨p−s,p−s⟩3+16⟨p−s,a⟩⟨p−s,b⟩⟨p−s,p−s⟩⟨p−s,p−s⟩4=4(⟨p,p⟩−2⟨p,s⟩+⟨s,s⟩)2(a,b)=4((p,p)−1)2(a,b).
Definition
The open unit ball D={u∈Rn:(u,u)<1} endowed with the \emph{Riemannian metric}
gu(a,b)=4(1−(u,u))2(a,b),
where a, b are tangent vectors to D at u, is the \emph{Poincaré ball model} of the hyperbolic space.
It is \emph{conformal}, i.e. the hyperbolic angles equal the Euclidean angles.
The \emph{length of a curve γ:[0,1]→D} is given by
length(γ)=∫10√gγ(t)(γ′(t),γ′(t))dt.
Relation between Klein and Poincaré model
Claim: A is the vertical projection along en+1 of c(x) onto the hemisphere:
Ai=c(x)ifor all i=1,…,n.
For this, observe that A=s+t(x−s) for some t and (A,A)=1.
Thus (s+t(x1⋮xn+1+1),s+t(x1⋮xn+1+1))=1 yields
1=1+2(s,t(x1⋮xn+1+1))+t2‖(x1⋮xn+1+1)‖2
and hence
0=−2t(xn+1+1)+t2(n∑i=1x2i+x2n+1+2xn+1+1).
Now by ⟨x,x⟩=−1 we obtain
t2n∑i=1x2i=t2(x2n+1−1)
which gives us t=0 or
t=2(xn+1+1)2xn+1(xn+1+1)=1xn+1.
So A=(0−1)+1xn+1(xxn+1+1)∈Rn,1.
Thus
(A)i=1,…,n=1xn+1x.
The coordinates of c(x) are given by
c(x)=(1xn+1x1).
This proves the claim.